Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica
نویسندگان
چکیده
Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state.
منابع مشابه
The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont.
Uric acid stored in the fat body of cockroaches is a nitrogen reservoir mobilized in times of scarcity. The discovery of urease in Blattabacterium cuenoti, the primary endosymbiont of cockroaches, suggests that the endosymbiont may participate in cockroach nitrogen economy. However, bacterial urease may only be one piece in the entire nitrogen recycling process from insect uric acid. Thus, in a...
متن کاملComparative Genomics of Blattabacterium cuenoti: The Frozen Legacy of an Ancient Endosymbiont Genome
Many insect species have established long-term symbiotic relationships with intracellular bacteria. Symbiosis with bacteria has provided insects with novel ecological capabilities, which have allowed them colonize previously unexplored niches. Despite its importance to the understanding of the emergence of biological complexity, the evolution of symbiotic relationships remains hitherto a myster...
متن کاملDetection of malathion and chlorpyrifos resistance mechanism in German cockroaches (Blattella germanica, Insecta: Blattodea: Blattellidae) using piperonyl butoxide and tributyl phosphorotrithioate
Introduction: German cockroach (Blattella germanica, Insecta: Blattodea: Blattellidae) is considered one of the most common household pests which can transfer pathogenic agents and also cause allergic reactions. Frequent and uncontrolled spraying caused resistance in German cockroach to insecticides. In this study we aimed, to determine the malathion and chlorpyrifos resistance mechanism ...
متن کاملGenome Economization in the Endosymbiont of the Wood Roach Cryptocercus punctulatus Due to Drastic Loss of Amino Acid Synthesis Capabilities
Cockroaches (Blattaria: Dictyoptera) harbor the endosymbiont Blattabacterium sp. in their abdominal fat body. This endosymbiont is involved in nitrogen recycling and amino acid provision to its host. In this study, the genome of Blattabacterium sp. of Cryptocercus punctulatus (BCpu) was sequenced and compared with those of the symbionts of Blattella germanica and Periplaneta americana, BBge and...
متن کاملNitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont.
Nitrogen acquisition and assimilation is a primary concern of insects feeding on diets largely composed of plant material. Reclaiming nitrogen from waste products provides a rich reserve for this limited resource, provided that recycling mechanisms are in place. Cockroaches, unlike most terrestrial insects, excrete waste nitrogen within their fat bodies as uric acids, postulated to be a supplem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2009